Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Molecules ; 27(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566069

RESUMO

SIRT1, an NAD+-dependent deacetylase, catalyzes the deacetylation of proteins coupled with the breakdown of NAD+ into nicotinamide and 2'-O-acetyl-ADP-ribose (OAADPr). Selective SIRT1 activators have potential clinical applications in atherosclerosis, acute renal injury, and Alzheimer's disease. Here, we found that the activity of the potent SIRT1 activator CWR is independent of the acetylated substrate. It adopts a novel mechanism to promote SIRT1 activity by covalently bonding to the anomeric C1' carbon of the ribose ring in OAADPr. In addition, CWR is highly selective for SIRT1, with no effect on SIRT2, SIRT3, SIRT5, or SIRT6. The longer distance between the anomeric C1' carbon of the ribose ring in OAADPr and Arg274 of SIRT1 (a conserved residue among sirtuins) than that between the anomeric C1' carbon in OAADPr and the Arg of SIRT2, SIRT3, SIRT5, and SIRT6, should be responsible for the high selectivity of CWR for SIRT1. This was confirmed by site-directed mutagenesis of SIRT3. Consistent with the in vitro assays, the activator also reduced the acetylation levels of p53 in a concentration-dependent manner via SIRT1 in cells. Our study provides a new perspective for designing SIRT1 activators that does not rely on the chemical moiety immediately C-terminal to the acetyl-lysine of the substrate.


Assuntos
Sirtuína 3 , Sirtuínas , Carbono , Lisina/química , NAD/metabolismo , Ribose , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...